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A lower bound procedure for energy eigenvalues based on the method of intermediate problems is given. A 
projection technique is used to construct a family of operators smaller than a given Hamiltonian whose eigen
values are lower bounds to those of the given Hamiltonian. By a particular choice of subspaces associated 
with the projections it is possible to construct the family in such a way that certain members may have an 
eigenvalue coinciding with one of the real eigenvalues of a nonlinear but finite matrix eigenvalue problem. 
Application to the helium atom ground state indicates that the procedure may be more efficient than the pro
cedures customarily used. 

I. INTRODUCTION 

IN this paper we give a lower bound procedure for 
energy eigenvalues based on the method of inter

mediate problems originated by Weinstein.1 The pro
cedure uses a projection technique of Aronszajn2 for 
the construction of intermediate operators and is closely 
related to the procedures of Bazley and Fox.3-5 

The procedure is developed in Sees. II and III. 
Section IV is devoted to test calculations on the ground 
state of the helium atom. The results of these calcula
tions indicate that the procedure may prove to be more 
efficient than the procedures which have previously been 
used in obtaining accurate lower bounds to the helium 
ground state. 

II. INTERMEDIATE HAMILTONIANS 

We outline here the technique of Aronszajn for con
structing intermediate operators. Our discussion follows 
that of Bazley and Fox4 with modifications pertinent 
to the new procedure. 

We consider a time-dependent Schrodinger equation, 

£ty=E*, (2.1) 

for which the Hamiltonian H is bounded from below 
and possesses a sequence of bound states lying below 
any continuous spectrum. We confine our attention to 
these states lying below the first limit point and regard 
them as ordered according to energy, 

E1<E2<-". (2.2) 

We further suppose that H can be written as the sum 

H=H°+V, (2.3) 

* Work supported in part by the National Science Foundation 
and in part by the National Aeronautics and Space Administra
tion under Research Grant NsG-512. A portion of this paper 
formed a part of a dissertation presented by the author to the 
Graduate Council of the University of Florida in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy. 

t National Defense Education Act Fellow, 1960 through 1963. 
1 A. Weinstein, Mem. Sci. Math. No. 88 (1937). 
2 N. Aronszajn, Proceedings of the Oklahoma Symposium on 

Spectral Theory and Differential Problems, Oklahoma A. and M. 
College, 1951 (unpublished). 

3 N . W. Bazley, Phys. Rev. 120, 144 (1960). 
4 N. W. Bazley and D. W. Fox, J. Res. Natl. Bur. Std. 65B, 

No. 2, 105 (1961). 
B N. W. Bazley and D. W. Fox, Phys. Rev. 124, 483 (1961). 

where V is positive definite, and where H° is bounded 
from below and has bound states beneath its first limit 
point. Although the procedure does not use the solutions 
to the eigenvalue equation for H°, 

H°iP°=E0^; (2.4) 

directly, the energies of the lowest bound states are 
needed. We therefore assume that the energies 

E^<Ei<- (2.5) 

belonging to the ordered states of H° lying below its 
first limit point are known. 

Since H—H° is the positive definite operator V, we 
have that 

(H°)<(H) (2.6) 

for all \p in the domain of H, and by a theorem of 
Weyl,6 this inequality is sufficient to guarantee the in
equalities 

E*<Ei9 ( i = l , 2 , .-•) (2.7) 

among the ordered eigenvalues of H° and H. The initial 
eigenvalues of H° are thus lower bounds to those of H. 

To improve these bounds, we construct a sequence of 
intermediate Hamiltonians Hn satisfying the inequalities 

<#°>< <#n>< <#n+1>< <#> (2.8) 

so that their ordered eigenvalues satisfy 

E^<E^<E^<Ei, (f=l, 2, • • • ) , (2.9) 

and thus give lower bounds increasing toward the eigen
values of H, The construction requires the introduction 
of projection operators in a vector space "0 character
ized by the metric operator V. The inner product in V 
is therefore (<p\V\\f/). However, for convenience, we 
adopt the normalization convention 

<*!*>= 1 (2.10) 
for elements of V. 

The projection operator On projecting on the linear 
manifold Vn spanned by the elements pi, p2, •", pn 
of a set {pi} linearly independent in V is conveniently 

6 H, Weyl, Bull Am. Math. Soc 56, 115 (1950). 
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represented by 

it 3—1 

(2.11) 

where An is the inverse of the ^th-order matrix with 
elements (pi | V \ pj). It is readily verified that 

(On)2=On, 

O^V=OnJ;VOn^VOn, 
(2.12) 

so that the operator VOn is self-adjoint. Further, from 
the properties of projection operators and the fact that 

VnCVn+1CV (2.13) 

we have, with the convention (2.10), 

0< (VOn)< (VOn+l)< (V). (2.14) 

This relation forms the basis for the construction of 
the Hn for, if they are defined by 

Hn=H°+VOn, (2.15) 

the inequalities (2.8) are ensured by (2.14). Thus, 
provided the eigenvalue equation for the operators 
(2.15) can be solved, we have a means of obtaining 
sequences of lower bounds improving toward the eigen
values of H. A formal solution has been given by Bazley 
and Fox4 which we repeat in part here. 

We consider the eigenvalue equation for the Hn, 

Hnypn^En\pn, (2.16) 

where En lies below the first limit point of H°. (The Hn 

and H° have common limit points.4) With the aid of 
(2.11), (2.16) may be written as 

(H°-En)rl/n=-VOn$n 

= -V Z Air<Pi\V\^)pi 
1 , 3 = 1 

= vY.CiPi, 

(2.17) 

where 

C.-=-EAtf»<fc|7|*»>. (2.18) 

If En is not an eigenvalue of H°, (2.15) may be multiplied 
by the resolvent operator (H°—E^1 to give an ex
pression for the eigenfunction 

^ = ( F - £ t ^ l Q < . (2.19) 

Unfortunately, (2.19) is usually not an acceptable 
form for the eigenfunction since the resolvent is seldom 
known in closed form, being generally expressible only 
as a spectral resolution involving infinite sums and 
integrals. The result is that ypn cannot be reduced to a 

linear combination of known terms, and as a conse
quence, the eigenvalue problem for the Hn does not 
reduce to a finite algebraic problem.4 

Bazley and Fox have devised several procedures for 
avoiding this difficulty with the resolvent involving 
either special choices of the elements pi or modification 
of the H° operator.3-5 Our procedure eliminates the 
resolvent entirely from the expression (2.19) for one of 
the \f/n by a different special choice of the pi. 

Prior to developing this procedure in Sec. I l l , we 
wish to comment on the convergence of the eigenvalues 
of the Hn to those of H. It has been shown4 that, pro
vided H° and H have completely continuous inverses, 
V is bounded relative to H°, and the set {pi} is complete 
in V, the eigenvalues and eigenfunctions of the Hn con
verge to those of H. Of equal interest in applications, 
where only a finite number of elements pi are used, is 
the rapidity of convergence. In this connection, we 
demonstrate that the error in a lower bound En is of 
second order in the error in the eigenfunction \[/n and 
in an error arising from the error in the operator Hn. 
We introduce the orthogonal complement Pn to On 

defined by 
Pn^l-On, (2.20) 

and having the properties 

prtyz=zprtypn — ypn 

Qnfypn^pntyQn^Q^ 

(2.21) 

(2.22) 

We may now write H as 

H=H°+V(On+Pn) 

= Hn+VPn, 

and one of its eigenfunctions as the sum 

tf=*»+«, (2.23) 
where 

<*|*>= 1, <*»|8> = 0. (2-24) 
The energy E corresponding to \p is then7 

E=<*|ff|*> (2.25) 
= En($n | ip>+ (81 Hn | d)+ (x/y\ VPn | $). 

If we denote Pn\f/ by 6;, we find for the error in the lower 
bound 

0<A-= E-En (2.26) 
= (5\Hn\d)-En(6\8)+(8'\V\d'), 

observing that the first two terms arise from the error 
in \pn while the last arises from the error in Hn. 

We give for comparison the well-known equivalent 
relation for the error in an upper bound obtained with 
the variation principle. We take <p to be a normalized 
trial function orthogonal to all eigenfunctions of H with 

7 We point out that Pn\pn does not, in general, vanish. 
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(2.27) 

(2.28) 

(2.29) 

(2.30) 
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energies less than E. We write <p as 

where 

<*!*>>= 1, < ^ | T > = 0 . 

If W is the upper bound obtained with <p, i.e., 

W=(<p\H\<p) 
= E{^)+{y\H\y), 

we find for the error in the upper bound 

0<A+=W-E 
= (y\H\y)-E(y\y). 

Upon comparing (2.26) and (2.30), we see that the 
first two terms of (2.26) are of the same general form 
as the terms of (2.30), and if \pn and <p do not differ 
greatly, it is reasonable to suppose that these terms will 
be comparable in magnitude. If this is the case, we see 
that the error in the lower bound will be greater by 
approximately 

A - - A + ~ < 5 ' | F | 5 ' > . (2.31) 

III. ELEMENTS CONTAINING THE INVERSE 
OF THE RESOLVENT 

As discussed in Sec. II , the difficulty in solving the 
eigenvalue equation for the intermediate Hamiltonians 
of (2.15) arises from the appearance of the resolvent 
operator (H°—En)~l in (2.19). The procedure given in 
this section eliminates the resolvent from (2.19) by 
denning the elements pi in terms of another set of 
elements ft according to the relation8 

p^V-KW-E^U, ( f = l , 2 , • - . ) . (3.1) 

In the development of the procedure, it is convenient 
to introduce a family of pi which contains the pi of (3.1) 
denned by 

Pi(€) = V'l(H0-e)fi9 ( f = l , 2, • • • ) , (3.2) 

where e is regarded initially as an arbitrary scalar 
parameter. The fi are restricted only in that they be 
linearly independent functions in the domain of H and 
such that the pi are square-integrable in V, i.e., such 
that (pi(e)\V\pi(e)) is finite. 

From (2.11) we obtain for the operators On(e) pro
jecting on the subspace *Un(€) spanned by pi(e), ^ ( e ) , 
' ' ", #n(e), 

0»(e)=£; Ipii^AiH^ip^lV. (3.3) 

Using these, we construct a family of intermediate 
Hamiltonians parameterized by e, 

According to (2.19), their eigenvalue equations, 

Hn(e)rPn(€)=-E^n(e), (3.5) 

are satisfied, for eigenvalues different from the Ef by 
eigenfunctions of the form 

i H e ) = (H°-En)-iV Z dPi(e), (3.6) 

with the d given by 

Ci=-i.Kir{*){pi(<)\V\r(i». (3-7) 

Using (3.2) in (3.6) gives an expression for the eigen
functions in terms of the /,-, 

lK«) - (Ho-E*)-1 E Ci(H°- e)fi. (3.8) 

We inquire now as to whether there exist specific 
operators Hn(En) of the family (3.4) having the eigen
value En for, in this event, (3.8) reduces to the finite 
linear combination of the /*-,9 

f(^) = E^, (3.9) 
i = l 

If such operators exist, they will satisfy eigenval 
equations of the form 

ue 

(H°-E») E Cifi=VO»(E») E dU 

=o»t(£»)Fi;c»/1-. 
(3.10) 

H*(e) = H°+VO»(e). (3.4) 

8 The author is indebted to Professor P. O. Lowdin for suggest
ing this choice of the pi. 

By forming the inner product of (3.10) successively with 
pi*(En), p2*(En), •••, pn*(En), we obtain the set of 
equations, 

E 1{{EP-E«)fi\ V~i\ (H»-E«)fi) 

+ </y|H°-£»|/.->]Cf- = 0 , (3.11) 

( i = l , 2 , . . • » ) . 

These constitute a nonlinear matrix eigenvalue equation 
of order n, 

[ M ° + M 1 E - + M 2 ( E - ) 2 ] C = 0 , (3.12) 

where the matrices M°, M1, and M2 are Hermitian and 
have the elements 

MJ>= {WJ{\ F-11 Wf,)+ (M&lf,), 
MJ= - (WU\ V~x\ fi>-{fi\ V-l\Wf,)- (fi\fi), (3.13) 

9 Since the resolvent has been eliminated in going from (3.8) 
to (3.9), (3.9) is not restricted to eigenvalues different from the 
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Equation (3.12) differs from the usual linear matrix 
eigenvalue equation involving Hermitian matrices in 
that it may or may not have real eigenvalues. An 
examination of the associated secular equation, 

de t [M°+M 1 £ w +M 2 (£ w ) 2 ] = 0 , (3.14) 

shows that it is a polynomial equation of degree 2n in 
En with real coefficients and may therefore have complex 
roots occuring in conjugate pairs. Consequently the 
number of real eigenvalues of (3.12) is even and may 
range from zero to 2n. The existence of such real eigen
values is the criterion for the existence of operators 
Hn(En) having the eigenvalue En. The eigenfunction 
\l/n(En) of En(En) associated with a real eigenvalue En 

of (3.12) is obtained from the corresponding eigenvector 
C whose elements are the coefficients Ci in (3.9). 

We wish to emphasize that (3.12) determines only 
one eigenvalue for a given operator, for if (3.12) has k 
distinct real eigenvalues, each of these belongs to a dif
ferent one of the k intermediate Hamiltonians Hn{Ein), 
Hn{E2

n), • • •, Hn(Ek
n). Thus, only if an eigenvalue is 

multiple, is more than one state of an intermediate 
Hamiltonian determined. This property of supplying 
only one eigenvalue for a given operator is a serious 
disadvantage of the procedure, for, without the other 
eigenvalues, we cannot, in general, locate the known 
eigenvalue Ejn in the spectrum of Hn(Ejn), and are 
consequently unable to determine to which eigenvalue 
of IT it is a lower bound. 

However, if the spacing of the initial levels of H° is 
sufficiently wide we can locate Ef in the spectrum of 
Hn(Ejn) in the following way. From the inequality 

<fl»><<ff»(JSy»)>, (3.15) 

we have10 

E»<Eji*, (*=1,2 , - . . ) , (31.6) 

from which the theorem stated below follows. 
THEOREM: If the known eigenvalue E5

n of Hn(E,n) 
satisfies 

£ « ° < £ / n < £ « + i ° , (3.17) 
and if upper bounds to a—1 eigenvalues of H [or of 
Hn(Ejn)2 lie below Ejn, then Ejn is a lower bound to 
Ea. For the ground state, the requirement reduces 
simply to 

Ef<E#. (3.18) 

In connection with the convergence of this procedure, 
we first consider the entire family of operators (3.4) 
without regard to whether they have solutions deter
mined by (3.12). Since they are just special cases of the 
intermediate Hamiltonians of Sec. I I , the conditions 
stated there are sufficient for the convergence of the 
operators (3.4) to J9?However, the completeness of the 
elements (3.2) requires, in addition to the completeness 

10 The subscript i on Ejin enumerates the ordered eigenvalues of 
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of the fi, that the transformation defined by (3.2) be 
nonsingular. I t is easily shown that the transformation 
will be singular if and only if some eigenfunction \f/f of 
H° is included in the span of fh f2, • • • , / » and, at the 
same time, e=Ef. Therefore, if we separate the oper
ators (3.4) into those for which e^Ef (i=l, 2, • • • ) , 
and those for which e=Ef ( i = l , 2, • • •), the former 
will converge to H as the fi become complete while the 
latter will not. In fact, Hn(Ej°) will agree with H° on 
*A i.e, 

H«(E?)W=EMJ>. (3.19) 

This follows from the easily deduced result that if fh 

h> ''' > fn contains ^ / , 

W\VO»(Ef>)\W) = 0. (2.20) 

Returning now to the members of (3.4) which have an 
eigenvalue and eigenfunction determined by (3.12), 
we point out that it is entirely possible that a given 
equation will have no solutions at all corresponding to 
a situation in which (3.14) has no real roots. Further, 
there is no guarantee that the subspace Vn(Ef) will be 
contained in Vn+1(Ejn+1) since, in general, Ejn^Ejn+l. 
We therefore have no assurance that the sequence Ejn, 
Ejn+1, • • • is monotonic increasing. Because of these 
complicating features, we consider only a special case 
which, however, is the one of interest in applications. 
We suppose that, by a judicious choice of the fiy we 
have succeeded in obtaining a set of equations (3.12) of 
orders q, q+1, •••, whose secular equations have at 
least one pair of real roots. In addition, we suppose that 
each member of the sequence Ejq, Ef+1, • • • formed 
from the j t h roots of the secular equations satisfies the 
theorem previously proved for some value of a. We then 
have 

Ea°<E^<Eaf (n=q, q+1, . . . ) . (3.21) 

We now make use of the convergence properties estab
lished above to state that if n increases without limit 
and the f{ become complete, one or the other of the 
inequalities in (3.19) will hold so that the sequence will 
(on the average) either decrease toward Ea° or increase 
toward Ea. We are, of course, interested only in lower 
bounds belonging to sequences exhibiting the latter 
behavior. 

As discussed in Sec. I I , the procedure is a second-
order process and can be expected to be rapidly con
vergent provided the quantities 5 and 5' of (2.26) can 
be made small. Since the choice of the elements /,- is 
essentially unrestricted in this procedure, we can, in 
principle, select them so as to make both quantities 
small. However, it is not clear how to choose the fi so 
as to minimize the quantity 

5/ = PY=^- £ (fi\H°-En\t) 
i, y — 1 

XAtf»(JS») V-\H°-En)fj. (3.22) 
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On the other hand, it is relatively easy to select the /»• 
so as to make 8 small. By choosing elements which are 
known to serve as a good basis for a variational upper-
bound calculation, we may expect that the quantity 
(81 Hn—En | 8) will be small, i.e., of the same order as the 
error (y\H—E\y) in the upper bound, so that the ap
proximate relation (2.31) will hold. We can make no 
estimate of the relative magnitude of the remaining 
term {8f\ V\8') in (2.26), but it is reasonable to suppose 
that it will be dominant. We find confirmation in the 
results of the calculations on the helium ground state 
in the next section. The elements used in these calcula
tions were chosen by the method just described. The 
lower bounds are found to have errors which are, on the 
average, about an order of magnitude larger than the 
errors in comparable upper bounds, indicating that the 
term in 5' is larger than the term in 8 by about the same 
amount. 

IV. LOWER BOUNDS TO THE GROUND 
STATE OF HELIUM 

Considerable interest has been attached to the calcu
lation of upper and lower bounds to the ground-state 
energy of the nonrelativistic helium Hamiltonian which 
confine the theoretical energy within the limits of error 
of the value provided by correcting the relativistic 
experimental energy.11-20 While it has been possible to 
compute upper bounds which lie within the current 
experimental error,18 equal success has not been ob
tained with lower-bound calculations19 because the lower 
bound procedures used, those of Temple21 and Stevenson 
and Crawford,12 are substantially less efficient than the 
variational upper bound procedures. For example, 
Pekeris18,19 has given the bounds 

-2.903726615 (au)<£!<-2.903724375 (au), (4.1) 

for which Schwartz20 estimates that the error in the 
lower bound, which was obtained with Temple's formula 
using the same 1078 term wave function which gave 
the upper bound, is two to three orders of magnitude 
greater than the error in the upper bound. 

To illustrate the application of the procedure given 
in this paper and to compare its efficiency with that of 
the previously used procedures, we carry out lower 
bound calculations of orders through ten on the ground 
state of helium in this section. 

11 E. A. Hylleraas, Z. Physik 48, 469 (1928). 
12 A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375 

(1938). 
18 S. Chandrasekhar and G. Hertzberg, Phys. Rev. 91, 1172 

(1953). 
14 S. Chandrasekhar and G. Hertzberg, Phys. Rev. 98, 1050 

(1955). 
1 5L. W. Wilets and I. J. Cherry, Phys. Rev. 103, 112 (1956). 
16 T. Kinoshita, Phys. Rev. 105, 1490 (1957). 
17 T. Kinoshita, Phys. Rev. 115, 366 (1959). 
18 C. L. Pekeris, Phys. Rev. 115, 1216 (1959). 
19 C. L. Pekeris, Phys. Rev. 126, 1470 (1962). 
20 C. Schwartz, Phys. Rev. 128, 1146 (1962). 
21 G. Temple, Proc. Roy. Soc. (London) A119, 276 (1928). 

In atomic units, the nonrelativistic helium Hamil
tonian is 

ff = - iV 1 2-JV 2
2 -2A 1 ~2/r 2 +lA 1 2 . (4.2) 

H can be put into the form (2.3) by taking H° as 

#°= - iV 1
2 ~JV 2

2 -2A 1 -2A 2 , (4.3) 
and V as 

V=l/r12. (4.4) 

We estimate only the ground state of H which is 
singlet S in character. Consequently, the only knowledge 
of the solutions to H° required is the energy of its first 
excited singlet S state. The solutions to H° are well 
known and the ordered energies of its lowest singlet S 
states consist of its ground-state energy and a sequence 
of excited-state energies converging toward the first 
limit point at — 2, 

Ef=-2(1+1/f), 0 = 1 , 2 , - . . ) . (4.5) 

The first excited singlet S state thus has the energy 
E2°= — 2.5. Since this is greater than the upper bound to 
Ei given in (4.1), we will be able to identify lower bounds 
to the ground state by (3.18). 

We have chosen for the /»• terms of the Hylleraas 
series11 which is defined in terms of the coordinates 

s = ri+r2, t=ri—r2, u=r12 (4.6) 
as 

00 

$ = e-»8 L c^WW, (4.7) 
H,v,cr—0 

where t? is a scaling parameter. This choice of the /*• 
insures that the \pn will be automatically of singlet 5 
character. The ten terms of (4.7) used are those found 
to be most effective in a tenth-order upper bound 
calculation.13 They are listed below, normalized to 167r2. 

/ I = [ ( 2 I ; ) V 2 > - ' ' , 

/ 2 = [ ( 2 T 7 ) 4 / 4 ( 6 ) 1 / 2 > ^ % 

/3 = [ (2>7) 5 /20 2 ^ , 

U= C(2??)4/2 (42 ) i / *> - i ' , 

h= C(2T 7 ) 5 /24(21) 1 / 2 ]A-^ , (4.8) 

/6=[(2t7)V40(3)1/2>2e-^, 

/ 7 = [ ( 2 T ? ) 5 / 4 8 ( 3 ) 1 / 2 > ^ - ^ , 

/ 8 ^ C ( 2 T 7 ) 6 / 9 6 ( 5 ) 1 / 2 ] / 2 ^ - ^ , 

/ 9 = [ ( 2 T ? ) 6 / 2 4 0 ( 7 ) 1 / 2 > ^ - ^ , 

/ I O = C ( 2 T 7 ) V 4 3 2 ( 3 0 ) 1 / 2 ] / 2 ^ - ^ . 

The calculations require the evaluation of the matrix 
elements (3.13) for i, j= 1, 2, • • •, 10 using the functions 
(4.8) for the /< and (4.3) and (4.4) for H° and V. The 
methods used to evaluate these are similar to the 
methods used by Wilets and Cherry15 in evaluating 
integrals in their lower bound calculations on helium 
using Temple's formula. The elements were used to 
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TABLE I. Comparison of the lower bound energies and wave functions of this paper with those of upper bounds of the same orders. 

Order Calculation* Energy (au) Errorb Wave function 

1 

2 

3 

6 

10 

upper bound 
lower bound 
upper bound 
lower bound 
upper bound 
lower bound 
upper bound 
lower bound 
upper bound 

lower bound 

-2.8477 
-3.0657 
-2.8912 
-2.9437 
-2.9024 
-2.9208 
-2.90324 
-2.9094 
-2.903603 

-2.9059 

0.0560 
0.1620 
0.0125 
0.0400 
0.0013 
0.0171 
0.00048 
0.0057 
0.00012 

0.0022 

exp(—1 
exp(—1 
exp(—1 
exp(—1 
exp(—1 
exp(—1 
exp(—1 
exp(—1 
exp(— 1. 

exp(—1 

.69s) 

.93s) 
,85s) [1+0.364**] 
.9&)[l+0.290»] 
.82s)[l-f0.30w+0.13*2] 
.75s)[l+0.272^+0.093/2] 
.82s)[l+0.353w+0.128*2-0.101s+0.033s2-0.032<] 
.72s)[l+0.312^+0.095*2-0.208s+0.031s2-0.020^2] 
.76s)tl+0.3Slu-\-0A57t2-0.129s+0M3s2-0.068u2 

+0.019^~0.034^+0.006w34-0.005*V] 
.76s)[l+0.327w+0.152*2-0.134s-f0.009s2-0.066w2 

4-0.009^-0.010*2w+0.001w3+0.006*VJ] 

a The upper bounds of orders one, two, three, and six were taken from L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill 
Book Company, Inc., New York, 1935), p. 224. All but that of first order are due to Hylleraas. The tenth-order upper bound was taken from Ref. 13. 

b The errors were computed using the upper bound of (4.1) for the exact energy. 

construct eigenvalue equation (3.12) of orders through 
ten, which were solved for their real eigenvalues and 
associated eigenvectors by an iterative technique of 
Lowdin.22 Our results are given in Figs. 1 and 2 and in 
Table I. 

It was stated in Sec. I l l that the real eigenvalues of 
(3.12) are even in number with an equation of order n 
having from zero to In real eigenvalues. In our calcula
tions we never find more than two. This is despite the 
fact that, e.g., the secular equation corresponding to 
the eigenvalue equation of order ten is a polynomial 
of degree twenty in the energy. In Fig. 1 we give, as 
typical, the behavior of the eigenvalues of an eigenvalue 
equation of order two based on the elements / i and /2. 
We see that, in the region centered around ?j = 2, two 
eigenvalues are found which merge near 17== 1.75 and 
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77==2.20. Outside this range no real eigenvalues are 
found. Both eigenvalues are lower bounds to the ground 
state, but we retain as useful lower bounds only those 
given by E2

2. Although not displayed in the figures, it 
is interesting to note that as the order of the calculations 
increases, the lower curve E\n flattens out rapidly so 
that at n= 6 it is quite close to the straight line Ei°= — 4. 
This supports the discussion in Sec. I l l regarding con
vergence to the Ei°. The exact value — 4 is attained at 
t]—2 for any order, since, at this point, /1 is identical 
with ̂ i°. 

In Fig. 2 we give the curves E2
n obtained from the 

calculations of orders one through six and the tenth-
order calculation.23 It is gratifying to observe the 
monotonic increase of the lower bounds with order, 
since we have not proved that this must necessarily 
occur. At points where two curves touch as, e.g., the 

-2.90 

-255 

UJ -3.05 

2.2 2.4 

FIG. 1. Eigenvalues of an eigenvalue equation (3.12) of order 
two. The curves labeled Ei2 and E2

2 give, at any value of rj, the 
lowest eigenvalues of the different operators H2(Ei2) and H2{E£). 

22 P. O. Lowdin, J. Mol. Spectry. 10, 12 (1963). 

FIG. 2. Lower bounds to the ground state of helium 
as a function of a scaling parameter. 

23 A calculation of order n is based on the functions /1,/2, 
fn taken in the order that they appear in (4.8). 
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TABLE II. Comparison of efficiencies of upper and lower bound procedures for the helium ground state. Columns (4), (6), and (8) indicate 
the efficiency of the procedure of this paper relative to the upper bound procedure and the other lower bound procedures. 

(1) 
Functions 

used 

h 
h—h 
h—h 
h—h 
h-ho 

(2) 
Lower bounds 
of this paper 

-3.0657 
-2.9208 
-2.9094 
-2.9068 
-2.9059 

(3) 
Upper bounds 

of Table I 

-2.8477 
-2.9024 
-2.90324 

-2.903603 

(4) 
A~/A+a 

2.9 
13 
12 

18 

(5) 
Lower boundsb'f 

of Stevenson 
and Crawford 

-3.5403 
-2.9481 
-2.9215 
-2.9102 

(6) 
ASC~/A-C 

3.9 
2.6 
3.1 
2.1 

(7) 
Lower boundsd 

with Temple's 
formula 

-4 .13 
-2.965 
-2.9257 

-2.9136 

(8) 
AT"/A~ e 

7.6 
3.6 
3.8 

4.5 

a The error in the lower bounds of (2) divided by the error in the upper bounds of (3). 
b Taken from Ref. 12. 
c The error in the lower bounds of (5) divided by the error in the lower bounds of (2). 
d Taken from Ref. 15. 
e The error in the lower bounds of (7) divided by the error in the lower bounds of (2). 
f These bounds could be improved slightly by using a less conservative value of a [see (4.11)]. Using a value of a near the optimum improved the ninth-

order lower bound to —2.9089. 

point near 77=2.02 for E2
2 and E2

S the higher order 
eigenfunction reduces to the lower order eigenfunction. 
Thus, at such points, Hn(Ejn) and Hn+l{Ejn+l) have a 
common eigenfunction as well as a common eigenvalue. 

In Table I we compare energies and wave functions of 
our optimized lower bounds of orders one, two, three, 
six, and ten with those of upper bounds of the same 
orders. We see that, though individual coefficients and 
the scaling parameter differ somewhat, corresponding 
wave functions have the same general form. It is evident 
that the lower bound procedure is much less efficient 
than the upper bound procedure. However, as will be 
shown, it appears to offer an increase in efficiency over 
the procedures of Temple and of Stevenson and 
Crawford. 

The lower bounds of Temple and of Stevenson and 
Crawford are not connected with intermediate problems 
and may be derived from easily established inequalities.24 

Temple's lower bound is given in terms of a trial func
tion it by 

E{>L={+\H\+) • ( « ) 
E2—{\p\H\y) 

while the more efficient25 result of Stevenson and Craw
ford is given by the somewhat more involved formula 

E1>L=a-Z(Hf\H4,)-M*\H\f)+c?Jf*, (4.10) 
24 For such a derivation of Temple's formula see Ref. 15. 
25 See Table II. The greater efficiency is maintained in higher 

order calculations. Kinoshita (Refs. 16 and 17), using a 39-term 
trail function, improved his lower bound by a factor of two in 
going from Temple's formula to the procedure of Stevenson and 
Crawford. 

where the quantity (H\ff\Hip) — 2a(\p\H\\lf) may be 
minimized by variational means, and where a must 
satisfy 

c K H £ i + £ 2 ) . (4.11) 

Optimum lower bounds are obtained when there is 
equality in (4.11). 

In Table II we compare the lower bounds of this paper 
with lower bounds computed with the fomulas (4.9) 
and (4.10). Comparison is also made with the upper 
bounds of Table I. The greater efficiency of the new 
procedure shown in Table II, while not outstanding, is 
significant if maintained in higher order calculations for 
even a small increase in efficiency can drastically reduce 
the amount of labor required to achieve a given accuracy 
in a lower bound when calculations of high order are 
involved. The increase in efficiency is especially signifi
cant since we judge the new procedure to be comparable 
in difficulty of application to the other two procedures.26 
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26 Evaluation of integrals is one of the major difficulties en
countered in these calculations. The integrals occurring in the 
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